Discontinuous Galerkin Methods for Semilinear Elliptic Boundary Value Problem
نویسندگان
چکیده
منابع مشابه
An Inverse Boundary-value Problem for Semilinear Elliptic Equations
We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.
متن کاملDiscontinuous Galerkin Methods for Periodic Boundary Value Problems
This article considers the extension of well-known discontinuous Galerkin (DG) finite element formulations to elliptic problems with periodic boundary conditions. Such problems routinely appear in a number of applications, particularly in homogenization of composite materials. We propose an approach in which the periodicity constraint is incorporated weakly in the variational formulation of the...
متن کاملLocal discontinuous Galerkin methods for elliptic problems
In this paper, we review the development of local discontinuous Galerkin methods for elliptic problems. We explain the derivation of these methods and present the corresponding error estimates; we also mention how to couple them with standard conforming finite element methods. Numerical examples are displayed which confirm the theoretical results and show that the coupling works very well. Copy...
متن کاملDiscontinuous Galerkin Multiscale Methods for Elliptic Problems
Discontinuous Galerkin Multiscale Methods for Elliptic Problems Daniel Elfverson In this paper a continuous Galerkin multiscale method (CGMM) and a discontinuous Galerkin multiscale method (DGMM) are proposed, both based on the variational multiscale method for solving partial differential equations numerically. The solution is decoupled into a coarse and a fine scale contribution, where the fi...
متن کاملDiscontinuous Galerkin Methods for Elliptic problems
We provide a common framework for the understanding, comparison, and analysis of several discontinuous Galerkin methods that have been proposed for the numerical treatment of elliptic problems. This class includes the recently introduced methods of Bassi and Rebay (together with the variants proposed by Brezzi, Manzini, Marini, Pietra and Russo), the local discontinuous Galerkin methods of Cock...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics and Mechanics
سال: 2023
ISSN: ['2070-0733', '2075-1354']
DOI: https://doi.org/10.4208/aamm.oa-2021-0257